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Abstract—Predicting airfoil trailing-edge noise accurately is
crucial for sound-aware aircraft design, but conventional ap-
proaches still rely on time-intensive and expensive Computational
Fluid Dynamics (CFD) simulations. This work introduces a
Physics-Informed Neural Network (PINN) framework combined
with transfer learning (TL), trained on two aeroacoustic datasets
from NASA and the University of Bristol, to produce accurate
and physically consistent sound pressure level (SPL) predictions
across various airfoil shapes. The key input parameters are
frequency, angle of attack, chord length, free-stream velocity,
radius of microphones from the trailing-edge, Reynolds num-
ber, and Strouhal number, plus a compact spline-based airfoil-
shape encoding. Compared with a transfer-learning Deep Neural
Network (TL-DNN), the TL-PINN achieves better accuracy
and generalization, especially under extrapolation, achieving test
RMSE below 2 dB. This approach offers a fast and scalable
alternative to CFD-based aeroacoustic simulations.

Keywords—Physics-Informed Neural Networks, Aeroacoustics,
Airfoil Noise

I. INTRODUCTION

Quiet supersonic travel for civilian use has been a popular
topic for many years, and several organizations have already
been working toward that goal by developing airplane pro-
totypes. Despite efforts, no commercial supersonic airliners
have been made available to the public due to the Federal
Aviation Administration (FAA) ban, enacted because of the
disruptive sonic booms they would create. The aeroacoustic
noise generated by the airfoils pose a critical design consid-
eration for aircraft. Quiet supersonic aircraft such as the X-59
need to be designed using a very inefficient process involving
Computational Fluid Dynamics (CFD) simulations to measure
noise output of the aircraft. As shown, currently, airfoil noise
prediction has relied on CFD simulations, coupled with acous-
tic solvers such as the Ffowcs Williams-Hawkings equation

(FW-H) [1]. Despite its strengths in modeling fluid behavior,
the drawbacks of CFD can outweigh these as it can also often
be sensitive to meshing strategy, turbulence modeling, and
boundary conditions, particularly near the trailing edge where
noise is predominantly generated.

Semi-empirical models such as the Brooks-Pope-Marcolini
(BPM) model [2] are a lower cost alternative, but their
assumptions (canonical NACA sections, attached flow, fixed
observer geometry) make them less accurate for modern high-
lift shapes or strongly separated regimes.

In recent years, machine learning (ML) has emerged as a
viable alternative to noise prediction due to its computational
efficiency and ability to learn complex nonlinear patterns from
data. For example, Redonnet et al. [3] trained a 14-layer deep
neural network (DNN) on 1503 NASA spectra and achieved
a 1.5–2.5 dB root mean squared error (RMSE) on unseen
configurations. Remarkably, the model still maintained 1.9 dB
RMSE when trained on just 50% of the data, outperforming
BPM predictions by roughly 60% and delivering predictions
in milliseconds. Similarly, Rastgoo et al. [4] demonstrated
that gradient-boosted decision trees (GBDTs) could also be
effective. Their hybrid CatBoost-AOA model achieved an R2

of 0.9706 and reduced test RMSE from 2.185 dB to 1.198 dB,
outperforming eleven other optimization techniques.

However, purely data-driven neural networks often lack
physical interpretability [5], generalizing poorly outside the
training process, and in scenarios with limited or noisy data.
This challenge highlights the value of PINNs. Introduced
by Raissi et al. [6], PINNs represent a significant shift in
modeling physical systems by incorporating known physical
laws such as conservation equations or partial differential
equations (PDEs) directly into the training process. This results
in models that can yield physically-consistent predictions even



with sparse data [7].
This paper presents a physics-informed deep learning frame-

work to predict far-field SPL of different airfoils under varying
subsonic flow conditions using a combination of two datasets.
The developed PINN framework provides a robust foundation
for future work in supersonic noise prediction. The model
utilizes a fully connected neural network architecture in Py-
Torch [8], trained with both mean squared error loss and
custom physics-informed loss functions.

II. METHODOLOGY

A. Experimental Dataset

Two publicly available aeroacoustic datasets from the
NASA Langley Research Center [9] and the University of
Bristol [10] were used to train the models. While separately
obtained, both datasets share compatible input features, mak-
ing a parallel comparison of turbulent boundary layer trailing
edge (TBL-TE) noise possible. Throughout this paper, the two
datasets will be referred to as the NASA dataset and Bristol
dataset, respectively.

Developed by Brooks et al. [2], the NASA dataset mea-
surements were made in the Quiet Flow Facility with NACA
0012 airfoils tested at many chord lengths (0.0254–0.3048 m),
free-stream velocities (up to 71.3 m/s), and angles of attack
(up to 25°). The tripping of the boundary layer was employed
to isolate TBL-TE noise. Far-field microphones recorded SPL
spectra, partially corrected for installation effects such as
background noise, flow downwash, and refraction. The dataset
includes 106 tripped configurations with 1503 data points,
covering both broadband and tonal noise behavior.

The Bristol dataset covers four NACA series airfoils: NACA
0012, NACA 0024, NACA 16506, and NACA 16616 [10].
Anechoic wind tunnel measurements had been performed,
which included far-field microphones measurements of surface
pressure and SPL spectra. These tests were conducted across
a wide range of angles of attack, including pre-stall and post-
stall regimes. The dataset provides diversity in airfoil contour
and noise dynamics, including stall features.

Although more features were included in the NASA and
Bristol datasets, only features that were either directly mea-
sured or closely derivable from both datasets were used. By
aligning both datasets to a shared schema of frequency (f ),
angle of attack (α), chord length (c), free-stream velocity
(U ), and Radius of Microphones from the Trailing-edge (re),
feature compatibility was ensured. From these, two additional
parameters were calculated: the Reynolds number, which ac-
counts for viscous flow effect, and the Strouhal number, which
normalizes frequency-based noise behavior across varying
flow scales.

B. Airfoil Parameterization

Since the datasets included a variety of airfoils, it was
essential for the models to be able to distinguish between
them, as shape variations in each airfoil can significantly alter
noise generation mechanisms. To achieve generalization across
different airfoils, a polynomial-based parameterization strategy

capturing the airfoil geometries was used, since inputting
hundreds of coordinates would make training very inefficient.

The geometric data for each airfoil were initially provided
as a set of discrete (x, y) coordinates that define the airfoil
surface. These coordinates were normalized so that the chord
length (c) spans from 0 to 1. The leading edge of the airfoil
was first identified, which corresponded to the minimum x
coordinate, then the airfoil was segmented into upper and
lower surfaces. Each surface was independently fitted using
a 7th-degree polynomial spline, enabling continuous represen-
tations of the airfoil profile. Let the upper and lower surfaces
be described by functions fu(x) and fl(x), respectively:

fu(x) =

7∑
i=0

aix
i (1)

fl(x) =

7∑
i=0

bix
i (2)

where ai and bi are the polynomial coefficients obtained via
least squares fitting. The fitted splines closely approximate the
surface contours. These 16 coefficients (8 per surface) were
concatenated into a single feature vector and passed as input
to the models. Spline fits for the four airfoils used in this study
were NACA 0012, 0024, 16506, and 16616, shown in Fig. 1.
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Fig. 1: Spline fits of four airfoils, where the gray dots represent
coordinates and the blue and red curves are upper and lower
splines respectively.

Compared to directly inputting the coordinates, which can
introduce high dimensionality and noise, this polynomial pa-
rameterization method captures the key features while reduc-
ing the complexity and making it easier for the model to
interpret [11].

C. Deep Neural Network (DNN)

A fully connected supervised Deep Neural Network (DNN)
was implemented due its ability to approximate the complex
mapping between various inputs and the resulting far-field
SPL [12]. The input vector consisted of multiple physical
and geometric features, including: Frequency (Hz), Angle of



Attack (º), Chord Length (m), Free-stream Velocity (m/s),
Microphone Array Radius from Trailing Edge (m), Reynolds
Number, and Strouhal Number.

The output was the predicted SPL (in dB) at the observation
location. The base model was trained only on the NASA
dataset and comprised of a primary branch that processed
the seven physical input features and an auxiliary branch that
processed the airfoil geometry, parameterized using two 7th-
degree polynomials derived from spline fits to the upper and
lower surface coordinates. The primary branch consisted of
three fully connected layers with 64, 32, and 16 neurons,
respectively, each followed by ReLU activation. The airfoil
branch was comprised of two hidden layers with 16 and 5
neurons. The outputs of both branches were concatenated and
passed through a final two-layer fully connected network to
produce the SPL prediction, and the dataset was randomly
partitioned 80% / 20% into training and testing sets.

To ensure generalization and training stability, batch nor-
malization was employed within the network. Mean Squared
error (MSE) was used as the loss function, where K represents
the number of data points and SPL

[TRUE]
k and SPL

[PRED]
k

represent the actual and predicted SPL.

MSE =
1

K

K∑
k=1

(
SPL

[TRUE]
k − SPL

[PRED]
k

)2

(3)

The network was optimized using the Adam optimizer with
a learning rate of 0.001. Training was conducted using mini-
batches of size 64 and a maximum of 10,000 epochs. To
further improve performance, transfer learning was imple-
mented. The primary branch of the base model was frozen
and a new network was initialized for the University of Bristol
dataset. Only the airfoil branch and the final fully connected
layers were trained (10,000 epochs), allowing the model to
use the learned flow representations while adapting to new
geometric and acoustic patterns. This approach significantly
reduced overfitting and allowed the model to converge faster.
Once trained, the models were assessed through the Root
Mean Squared error (RMSE).

D. Physics-Informed Neural Network (PINN)

Physics-Informed Neural Networks (PINNs) were applied to
improve the SPL prediction from airfoils by embedding known
physics laws as constraints. So instead of merely reducing the
difference between predicted and observed data, PINNs also
minimize the residuals of the governing physics equations,
which ensures that predictions remain physically meaningful.
The PINN has the same architecture and training/testing
process as the DNN described in the previous section, but
with the addition of physics-based loss functions.

The combined loss of a PINN is calculated as the sum of the
data-driven loss and each individual physics-based constraint:

Ltotal = Ldata + LPINN1
+ LPINN2

(4)

where Ltotal and Ldata are the total loss and MSE loss in
Equation (3), respectively.

The first PINN loss term was the constraint that acous-
tic energy must be less than or equal to kinetic energy
(AE ≤ KE). Acoustic energy is not an independent source
of energy, and it comes directly from the kinetic energy of
the flow. This makes it physically impossible for the acoustic
energy to be greater than the available kinetic energy, as that
would violate the law of energy conservation. The model was
penalized when it over-predicted the SPL, as it could yield
(AE > KE). To incorporate this idea into a loss function, the
torch.ReLU(AE−KE) function was used. Since AE−KE is
normally negative or zero, ReLU would equal to 0, implying
no penalty. However, when AE > KE, ReLU would be
positive, penalizing the model.

The second PINN loss term was directly inspired by two key
observations made by Hutcheson et al. [13] in their study of
incident turbulence interaction noise. The first was when the
abscissa was converted from raw frequency to the Strouhal
number, the spectra obtained at different free-stream Mach
numbers align horizontally. The second was after shifting
every spectrum downward by 10 log10 M

6 (i.e. subtracting
a U6

∞ dependence in decibels, where U∞ is the free-stream
velocity), and the three Mach curves in each figure also
collapsed vertically into each other. These two re-scalings
condensed flow-speed–dependent spectra into a single curve.
In the present work, this qualitative criterion was turned into a
quantitative loss function. First, the raw frequency was made
non-dimensional by forming the Strouhal number. Simulta-
neously, the predicted SPL was releveled by subtracting a
velocity-dependent offset 10 log10 U∞/c. Within every angle-
of-attack bucket present in the mini-batch the Strouhal axis
was divided into ten equally spaced centers, and for each
center the algorithm collects all samples whose Strouhal lies
inside a narrow ±3% band, and all points in such a band
should share the same SPL, accordingly the sample variance
in that band was zero. The loss sums those variances over all
populated bands and averages them, producing a single scalar
that was strictly positive whenever the predicted spectra fail
to collapse. Minimizing this quantity forces the network to
reproduce the horizontal and vertical overlap that Hutcheson
et al. demonstrated.

E. Transfer Learning

To improve generalization across the two different datasets,
transfer learning was employed using a base DNN and a
base PINN pre-trained on the NASA dataset. These two base
models worked by extracting physical relationships from the
NASA dataset, which were later implemented to enhance the
new model’s performance on the Bristol dataset.

Before training the transfer-learning DNN (TL-DNN) and
the transfer-learning PINN (TL-PINN), the Bristol dataset was
normalized using scikit-learn’s StandardScaler() function [14].
The architecture of transfer learning was to reuse the original
input branch of the base models trained on the NASA dataset
and to freeze it so that it did not update during training
of the new TL-DNN and TL-PINN on the Bristol dataset.
After the frozen branch and the new branch containing airfoil



geometry parameters were combined into a fusion branch (a
concatenation of both branches), the normalized SPL value
was regressed. Freezing the original input branch mitigated
overfitting and accelerated convergence, which aligned with
the findings of other transfer-learning studies [15], [16].

F. Results and Discussion

Multiple experiments were conducted to evaluate the per-
formance of all four models. Fig. 2 shows the training and
testing loss curves for the TL-DNN and TL-PINN.
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Fig. 2: Training and testing loss curves for TL-PINN and TL-
DNN over 10,000 epochs.

In Fig. 2, both models rapidly drive down their losses in
the first few hundred epochs and then taper off, but TL-
PINN consistently attains a lower floor (reaching around
0.09 train loss and around 0.10 test loss), whereas TL-DNN
levels out around 0.10 and 0.13, respectively. This indicates
that embedding the physics constraints via PINN not only
accelerates convergence but also yields better generalization
to unseen data.

Fig. 3 is a scatter plot of the sound pressure level (SPL) as
a function of frequency (0 − 4000Hz) at an angle of attack
(AoA) of 0◦ and 20◦. The actual SPL values are shown as
as black x, while the predictions of the TL-DNN and TL-
PINN are plotted in blue and orange, respectively. Both models
accurately capture the overall decay of SPL versus frequency
and track the true data within a few dB across the spectrum.

Fig. 4 illustrates how purely data-driven TL-DNN compares
to TL-PINN when asked to predict SPL beyond its training
range. The last two frequency values were intentionally hidden
during training, and both models were trained on SPL spectra
from 0.25 kHz to approximately 2 kHz (solid lines) and
then evaluated up to 4 kHz (dashed lines). In the training
regime both models tracked the true SPL (black ×) with
comparable accuracy. However, once forced to extrapolate,
the TL-DNN (blue dashed) developed unphysical oscillations
and significant bias, whereas the TL-PINN (orange dashed)
retained the expected smooth, monotonic roll-off and stayed
much closer to the measurements across all four foil shapes.
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Fig. 3: TL-DNN & TL-PINN SPL Predictions vs. Actual SPL
across Frequency at Angles of Attack of 0◦ and 20◦.
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Fig. 4: Extrapolation of TL-DNN vs. TL-PINN in predicting
SPL spectra at 0° AoA.

This is because when two frequency values were held out
of the training data, the TL-DNN’s purely data-driven nature
lacks the ability to infer SPL behavior in those gaps. As
a result, its predictions at the withheld frequencies deviate
substantially from the true values, showing worse accuracy
than in Fig. 3 when the two values were not hidden. This
behavior confirmed that embedding the governing physics into
the neural network enhances the models’ generalization ability.

Fig. 5 is a 2D heatmap of SPL as a function of frequency
(0− 4000 Hz) and angle of attack (−5◦ to 30◦) with dashed
white lines marking the edges of the training domain (AoA
= 25◦, f = 3147 Hz). The TL-PINN shows coherent and
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Fig. 5: 2D heatmap of TL-PINN predicted SPL as a function
of frequency (0−4000 Hz) and angle of attack (−5◦ to 30◦),
with dashed white lines marking the training domain limits.

smooth variation of SPL beyond both boundaries, free from
any indication of discontinuities or unphysical oscillations in
the extrapolated regions. A deep diagonal hump forms from
approximately (AoA = 25◦, f = 700 Hz) through to (AoA
= 0◦, f = 2800 Hz), characteristic of tonal noise response
due to laminar boundary-layer instability and vortex shedding.
Frequency–AoA variability observed is in the pattern of an
inverse Strouhal scaling trend with increasing flow separation
at higher angles.

TABLE I: RMSE values for the DNN, PINN, TL-DNN, and
TL-PINN

DNN PINN TL-DNN TL-PINN
Train RMSE (dB) 6.963 3.359 1.974 1.889
Test RMSE (dB) 6.682 3.792 2.087 1.865

Table I illustrates the RMSE values across all models,
with lower values indicating better model performance. Both
transfer-learning counterparts perform better than the base
models themselves, demonstrating improved accuracy due to
transfer learning. Both PINNs achieved lower RMSE values
than their DNN equivalents, demonstrating better performance
and highlighting improved predictions due to the physics-
informed loss functions.

III. CONCLUSION

This work demonstrates a PINN-based framework for pre-
dicting airfoil trailing-edge noise by embedding physics-based
constraints and spline-derived airfoil geometry into the learn-
ing process. The TL-PINN was trained on the NASA and
Bristol datasets using transfer learning, reaching RMSE below
2 dB over broad ranges of input regimes, comparable to the
accuracy achieved by the CatBoost models developed by Rast-
goo et al. [4] or the DNN developed by Redonnet et al. [3]. The
TL-PINN captures flow-dependent acoustic behavior even in
data-sparse regimes. This scalable and simulation-free method
lays the groundwork for efficient, noise-aware airfoil designs.

This framework can be integrated into broader aerodynamic
optimization pipelines or early-stage airfoil screening tools.
These results suggest that PINNs have the potential to be well-
suited for fast iteration in real-world design scenarios, where
the cost and duration of traditional CFD simulations remain
major challenges.
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