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Definitions: 
Temporal Point Processes (TPPs) are a random
process where isolated events are scattered in
time. In this case, we consider history-dependent
point process models; these help consider factors
such as the correlation of prior delays with future
delays. These constitute the “self-exciting”
elements of the model.
MBTA: The Massachusetts Bay Transportation
Authority; responsible for public transit through
systems including trains, subways, and buses.

Inspiration: While at BU RISE, the MBTA system was a
necessary tool to get around campus, be it to go to
class, participate in social activities, or go on field
trips. However, we sometimes experienced delays in
the MBTA system, and so became curious about
whether such behavior was predictable, and if so, how
best to predict it.

Goals: 
Determine which factors influence delay and
ridership prediction the most.
Rank models on predictive accuracy.

Models:
Random Forest (ML)
Gradient Boost (ML)
Multilayer Perceptron (ML)
K-Nearest Neighbors (ML)
Support Vector Machine (ML)
Linear Regression (Statistical)
Ridge Regression (Statistical)
Lasso Regression (Statistical)
Moving Average (Statistical)
Poisson Regressor (Statistical)
Point Process (only for delay data) (Statistical)
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Distribution of Daily Gated Station Entries

Distribution description:
1.Bimodal
2.Captured using two

normally distributed
curves

Distribution of Daily Delay Count

Distribution description:
1.Positive and right

skewed
2.Captured by a Gamma

distribution

Homogeneous Point Process Model
Key Assumptions:

1.
2.

3.

P(A|B) = P(A)

Introduction

Result 1
Random Forest Regression, Gradient Boost Regression, and

Multilayer Perceptron Perform Best

Interpretation
of Results
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Result 2
Models Improve Given Day of Week (+4.64%, +17.1%)

Models Are Not Affected Given Season (+0.332%, -0.198%)
Models Worsen Given Weather (-2.01%, -1.99%)

Above are the results for the model comparison. 
Models are ranked by their maximum performance (i.e., minimum RMSE) across all data blends. Each model has
two attributes, displayed above:

1.The aforementioned maximum performance value is labeled “Any Data.”
2.RMSE value given the target metric only as input – labeled “No Additional Data” – is also provided. 

The best 3 models are consistently Random Forest Regression, Gradient Boost Regression, and the Multilayer
Perceptron. This suggests these models are the most effective for prediction in small-scale data (on the scale of
thousands of data points). 

Confidence Intervals Interpretation:
95% confidence intervals have been computed (black lines) and are fairly small, suggesting that model performance
is relatively stable across bootstrapped datasets. Thus, we have high confidence that model performance rankings
are not substantially affected by random variation.

Above are results given different data blends, including 95% confidence intervals (black lines). Each category
corresponds to some set of data blends:
“Any Data”: Percentage improvement relative to RMSE given only the target metric of minimum RMSE on all tested
data blends.
“Day of Week Data”: Percentage improvement relative to RMSE given only the target metric of minimum RMSE on
data with day of week and target metric.
“Season Data”: Percentage improvement relative to RMSE given only the target metric of minimum RMSE on data
with season and target metric.
“Weather Data”: Percentage improvement relative to RMSE given only the target metric of minimum RMSE on
data with weather and target metric.

Interpretation of Graphs/Results:
1.As seen, while improvement is more substantial in delay count data compared to gated station entry data, just

including day of week data leads to improvement in both tasks. This improvement is close to the maximum
improvement out of all data blends for both, demonstrating the relevance of day of week data to prediction.

2.  Including season data has negligible effects on minimum RMSE, suggesting it is relatively irrelevant (likely
mostly being discarded by models).

3.  Including weather data led to worsening of predictions, suggesting that such data not only does not contain
information relevant to predictions but also leads to a tendency of models to overfit.

For delay count prediction, tree-based models and
neural networks (Gradient Boost Regression,
Random Forest, Multilayer Perceptron) achieved
the lowest RMSE (RMSE <= 31.2), while the Point
Process performed the worst (RMSE > 70).
For gated station entry prediction, Random Forest,
Gradient Boosting, and MLP again achieved the
lowest RMSE (RMSE <= 36400), with Poisson
regression performing the worst (RMSE = 119000).
Providing all / some additional data in varying
formats improved the gated station entry model
RMSE by an average of 6.86%, and the delay count
model RMSE by an average of 18.1%.
Day-of-week features alone created a 4.64%
average improvement in gated station entry
prediction and a 17.1% average improvement in
delay count prediction.

Target Metrics
We first compute RMSE values for varying models in predicting some
“target metric”:

The total number of delays (named “Delay”) in the next day
The total number of gated station entries (named “GSE”) on the
next day

Input Data Splits
For each task, each model was provided with inputs including a set of
metrics of the prior 5 days, which were shaped into a 1D tensor. Then,
100 cycles were run; in each cycle, a set of data points equivalent in
length to the original data points was selected with replacement from
the original data points. 

In each test, the first 80% (ordered by date) were selected as a training
set, and the remainder as a test set. This was:

For delay counts: 1333 train data points, 333 test data points
For gated station entries: 3355 train data points, 839 test data
points

Input Data Blends
To evaluate performance changes given changes in provided data, the
set of input data for each model test varied. The sets of metrics used
were:

Only the target metric
The target metric and day of week
The target metric and season
The target metric and weather data
The target metric, day of week, and season data
The target metric, day of week, and weather data
The target metric, season, and weather data
The target metric, day of week, season, and weather data

Input Data Enhancements
To mitigate differing data requirements for models (e.g., multilayer
perceptrons’ superior performance given one-hot encodings), models
were tested on each set of metrics up to 4 times. Tests included:

Original metrics
Scaled (via scikit-learn’s StandardScaler) metrics
One-hot encodings (if applicable) of metrics
Scaled one-hot encodings (if applicable) of metrics

Test Summary
Overall, 27 tests were performed for each model in each test cycle.
There were 10 models, amounting to 270 tests per cycle, 27000 per
task, and 54000 tests in total. The minimum RMSE of all such tests was
considered maximum model performance (“Any Data”), and the RMSE
of the test given no additional data was considered raw model
performance (“No Additional Data”).

Surprisingly, the models showed no performance
boost with the addition of weather data (pressure,
wind, precipitation, temperature, etc).
As demonstrated, calendar data and seasonality
dominate MBTA delay and gated station entries,
while weather shows minimal effects at the daily
aggregation level. Future work may want to explore
more extreme events.
Ensemble tree models (Gradient Boosting, Random
Forest) and neural networks (MLP) consistently
outperform other models and regressors,
suggesting complex and non-linear patterns across
the MBTA system.
Through our research, riders can be alerted in
advance of likely high-demand days. City planners
and policymakers can gain quantitative evidence on
which calendar factors (day-of-week, seasonality)
drive ridership and delays, which can inform budget
allocations and long-term investments.

Conclusions

Limitations/Future
Steps 

Aggregating to daily counts may remove sub-daily
patterns. Smaller intervals (15- or 30-minute) data
could capture more complex patterns.
We modeled system-wide totals rather than station-
or line-level. Localized disruptions may be invisible
when aggregated.
In the future, we could incorporate holidays, special
events in the Boston area, in order to explain the
outliers in the data. The models could also be
optimized using hyperparameter tuning through
Bayesian optimization, for instance.

Result 3
Homogeneous Point Process Model Does Not Perform Better 

(RMSE > 70)

Performs worse than all models.
In the future, on top of timestamp data, we could consider including weather and day of week information to
determine if that would enhance model performance.
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* Dependent data can be used with a Homogeneous Point Process, though
Assumption 1 would be violated, by decreasing the window size to make
the data independent.

Data Distributions


