Application of X-Ray Diffraction on the Proof of
Topological Edge States of Monolayer Graphene

ABSTRACT

Kaining Yuan! Vaed Kamat*

This research aims to decipher whether monolayer graphene exhibits topological properties, focusing on the computational side. The edge states of topological insulators can be difficult to predict using traditional methods, so we

used the principles of the Schrodinger Equation, Bloch’s Function, the Linear Combinations of Atomic Orbitals (LCAO), and Tight Binding Tool Kit (TBTK) to calculate the electronic band structure for graphene [4]. We first derived the
periodic boundary condition for the Graphene lattice, which was necessary for the computation of the reciprocal lattice space of the crystal using x-ray diffraction. With this information, we could easily solve for the crystal
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momentum vector k, which gave us information on the momentum space of electrons in the lattice. Normalizing this function with orbital overlapping function, we obtained the tight-binding Hamiltonian for Graphene, to which we

converted to momentum space and graphed the electronic band structure by utilizing the TBTK software. By analyzing the results, we concluded that monolayer graphene is a possible topological insulator, since the energy bands

intersected at the Dirac points (or the edges), while eliciting a wider band gap at its bulk.

01. Introduction
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Graphene holds interesting electrical properties due to the fact that bilayer graphene is a
topological insulator. A topological insulator is a material which exhibits conductivity on its
edges of the surface but is an insulator in most of its mass. For instance, a 3D topological
insulator will show conductivity on its faces while a 2D one has so on its edges. A crude
simplification of the idea is the model up above. While electrons in the center orbit around their
nuclei as usual, electrons on the edge have nowhere to go, so they bounce around the edges of the
material.

One way to explain this is by deeply analyzing the periodicity of the potential energy of
different lattice structures within the crystal, which reveals valuable information about the
energy and momentum of the electrons, and in turn, the band structure. Furthermore, analysis
of the band structure can yield critical information on the electrical properties of the lattice,
such as conductivity. In the case of Graphene, we only need to quantify our calculations to two
dimensions, since the Carbon allotrope is only a single atom thick.

Structure of Graphene: a hexagonal
(1) lattice. Blue: sublattice A. Red: sublattice B.
a and a,: lattice vectors
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02. Objective
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about the LCAO, Bloch function, and <
periodic boundary condition of
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enerygy eigenstates as a function of the (2)
crystal momentum space. Applied to
the wave function and using TBTK for
graphing, this will show us the
intersection of all band structures at

By using single crystal x-ray
diffraction, we can transform the real
space hexagonal lattice to reciprocal

any point in the lattice space. space, as in the case of graphene. a* is

the reciprocal lattice vector.

03. Methodology

The process involved calculating the periodic boundary condition for Graphene's Bravais lattice, determining the reciprocal
lattice using a Discrete Fourier Transform, and applying it to the Hamiltonian operator in the tight-binding model. Crystal
Field Theory was used to address orbital overlap, equating and normalizing LCAO and Bloch functions. With the new
equation and wave functions for orbital types, we were able to calculate each element of the operator. Calculations for
overlapping orbitals were made. Graphene's 4 types (S, P(x), P(y), P(z)) result in 16 orbital interactions between atoms,
leading to a 4x4 matrix. With self-interactions, the Tight-Binding Hamiltonian becomes an 8x8 matrix with 64 elements.
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This Hamiltonian was crucial for us to

understand the band structure in the | Tight-binding model in real space: H = —t Z c}L ACivs,B + H.c.
Brillouin zone at the high symmetry 5

points(L, K, and M). By inserting
parameters into the tight-biding
Hamiltonian and using TBTK to graph
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it, we obtained the following band
structure. In graphene, t = 3 V.

04. Results

2.5 - \ Our b&lﬂd

2 00- structure graph

05. Analysis

By comparing our generated band structure to
the band structure obtained by other
researchers through experiments, it’s evident

that the intersections at K are almost identical,
251 generated using

TBTK and C++

while the energy bands diverge at I. This

matches the band structure obtained by other

researchers’ experiments. The intersection

suggests that electrons can hop to a higher

enerygy band, leading to conductivity in the
Brillouin zone at edge K. The split at T suggests

that electrons won’t be able to hop over because

it is an insulator at the bulk. Therefore,
monolayer graphene has the potential to

become a topological insulator.
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06. Conclusion

e We first obtained the reciprocal lattice and the boundary
conditions for the hexagonal lattice of graphene.

e By implementing the Schrodinger’s equation, and normilizing
LCAO with Bloch’s function, we were able to unlock the
energy eigenstates of electrons and thus find the tight-binding
Hamiltonian to describe the band structure.

e In closure, we have shown how single X-ray diffraction can
play a crucial role in proving the topological edge states of
monolayer Graphene, since the reciprocal lattice contributes
to the wave function, and therefore the calculation of the
electronic band structure.

e By implementing similar steps of process, we are also able to
predict the topological properties of more complex
substances.

o TIs have surface states that are robust against scattering and
impurities, making them ideal candidates for stable qubits in
quantum computers. They have the potential to revolutionize
various fields of technology, leading to more efficient, stable,

and innovative devices.

Future Directions

1. Calculate the Berry phase and Berry curvature

2. Topological Invariant; The Chern Number

3. Using the tight-binding model, predict the
electrical properties of future topological

insulators.
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